69 research outputs found

    Simple Muscle Architecture Analysis (SMA): an ImageJ macro tool to automate measurements in B-mode ultrasound scans

    Full text link
    In vivo measurements of muscle architecture (i.e. the spatial arrangement of muscle fascicles) are routinely included in research and clinical settings to monitor muscle structure, function and plasticity. However, in most cases such measurements are performed manually, and more reliable and time-efficient automated methods are either lacking completely, or are inaccessible to those without expertise in image analysis. In this work, we propose an ImageJ script to automate the entire analysis process of muscle architecture in ultrasound images: Simple Muscle Architecture Analysis (SMA). Images are filtered in the spatial and frequency domains with built-in commands and external plugins to highlight aponeuroses and fascicles. Fascicle dominant orientation is then computed in regions of interest using the OrientationJ plugin. Bland-Altman plots of analyses performed manually or with SMA indicates that the automated analysis does not induce any systematic bias and that both methods agree equally through the range of measurements. Our test results illustrate the suitability of SMA to analyse images from superficial muscles acquired with a broad range of ultrasound settings.Comment: 8 pages, 7 figures, 1 appendi

    Simple Muscle Architecture Analysis (SMA): An ImageJ macro tool to automate measurements in B-mode ultrasound scans

    Get PDF
    In vivo measurements of muscle architecture (i.e. the spatial arrangement of muscle fascicles) are routinely included in research and clinical settings to monitor muscle structure, function and plasticity. However, in most cases such measurements are performed manually, and more reliable and time-efficient automated methods are either lacking completely, or are inaccessible to those without expertise in image analysis. In this work, we propose an ImageJ script to automate the entire analysis process of muscle architecture in ultrasound images: Simple Muscle Architecture Analysis (SMA). Images are filtered in the spatial and frequency domains with built-in commands and external plugins to highlight aponeuroses and fascicles. Fascicle dominant orientation is then computed in regions of interest using the OrientationJ plugin. Bland-Altman plots of analyses performed manually or with SMA indicate that the automated analysis does not induce any systematic bias and that both methods agree equally through the range of measurements. Our test results illustrate the suitability of SMA to analyse images from superficial muscles acquired with a broad range of ultrasound settings

    Rate of force development relationships to muscle architecture and contractile behavior in the human vastus lateralis

    Get PDF
    In this study, we tested the hypotheses that (i) rate of force development (RFD) is correlated to muscle architecture and dynamics and that (ii) force–length–velocity properties limit knee extensor RFD. Twenty-one healthy participants were tested using ultrasonography and dynamometry. Vastus lateralis optimal fascicle length, fascicle velocity, change in pennation angle, change in muscle length, architectural gear ratio, and force were measured during rapid fixed-end contractions at 60° knee angle to determine RFD. Isokinetic and isometric tests were used to estimate individual force–length–velocity properties, to evaluate force production relative to maximal potential. Correlation analyses were performed between force and muscle parameters for the first three 50 ms intervals. RFD was not related to optimal fascicle length for any measured time interval, but RFD was positively correlated to fascicle shortening velocity during all intervals (r = 0.49–0.69). Except for the first interval, RFD was also related to trigonometry-based changes in muscle length and pennation angle (r = 0.45–0.63) but not to architectural gear ratio. Participants reached their individual vastus lateralis force–length–velocity potential (i.e. their theoretical maximal force at a given length and shortening velocity) after 62 ± 24 ms. Our results confirm the theoretical importance of fascicle shortening velocity and force–length–velocity properties for rapid force production and suggest a role of fascicle rotation.publishedVersio

    Training Strategies to Improve Muscle Power: Is Olympic-style Weightlifting Relevant?

    Get PDF
    Introduction: This efficacy study investigated the effects of (1) Olympic-style weightlifting (OWL), (2) motorized strength and power training (MSPT), and (3) free weight strength and power training (FSPT) on muscle power. Methods: Thirty-nine young athletes (20±3 yr.; ice hockey, volleyball and badminton) were randomized into the three training groups. All groups participated in 2-3 sessions/week for 8 weeks. The MSPT and FSPT groups trained using squats (two legs and single leg) with high force and high power, while the OWL group trained using clean and snatch exercises. MSPT was conducted as slow-speed isokinetic strength training and isotonic power training with augmented eccentric load, controlled by a computerized robotic engine system. FSPT used free weights. The training volume (sum of repetitions x kg) was similar between all three groups. Vertical jumping capabilities were assessed by countermovement jump (CMJ), squat jump (SJ), drop jump (DJ), and loaded CMJs (10-80 kg). Sprinting capacity was assessed in a 30 m sprint. Secondary variables were squat 1-repetitionmaximum, body composition and quadriceps thickness and architecture. Results: OWL resulted in trivial improvements, and inferior gains compared to FSPT and MSPT for CMJ, SJ, and DJ. MSPT demonstrated small, but robust effects on SJ, DJ and loaded CMJs (3-12%). MSPT was superior to FSPT in improving 30 m sprint performance. FSPT and MSPT, but not OWL, demonstrated increased thickness in the vastus lateralis and rectus femoris (4-7%). Conclusion: MSPT was time-efficient and equally or more effective than FSPT training in improving vertical jumping and sprinting performance. OWL was generally ineffective and inferior to the two other interventions.Training Strategies to Improve Muscle Power: Is Olympic-style Weightlifting Relevant?acceptedVersio

    Eccentric cycling does not improve cycling performance in amateur cyclists

    Get PDF
    Eccentric cycling training induces muscle hypertrophy and increases joint power output in non-athletes. Moreover, eccentric cycling can be considered a movement-specific type of strength training for cyclists, but it is hitherto unknown if eccentric cycling training can improve cycling performance in trained cyclists. Twenty-three male amateur cyclists were randomized to an eccentric or a concentric cycling training group. The eccentric cycling was performed at a low cadence (~40 revolution per minute) and the intensity was controlled by perceived effort (12–17 on the Borgs scale) during 2 min intervals (repeated 5–8 times). The cadence and perceived effort of the concentric group matched those of the eccentric group. Additionally, after the eccentric or concentric cycling, both groups performed traditionally aerobic intervals with freely chosen cadence in the same session (4–5 x 4–15 min). The participants trained twice a week for 10 weeks. Maximal oxygen uptake (VO2max), maximal aerobic power output (Wmax), lactate threshold, isokinetic strength, muscle thickness, pedaling characteristics and cycling performance (6- and 30-sec sprints and a 20-min time trial test) were assessed before and after the intervention period. Inferences about the true value of the effects were evaluated using probabilistic magnitude-based inferences. Eccentric cycling induced muscle hypertrophy (2.3 ± 2.5% more than concentric) and augmented eccentric strength (8.8 ± 5.9% more than concentric), but these small magnitude effects seemed not to transfer into improvements in the physiological assessments or cycling performance. On the contrary, the eccentric training appeared to have limiting or detrimental effects on cycling performance, measured as Wmax and a 20-min time trial. In conclusion, eccentric cycling training did not improve cycling performance in amateur cyclists. Further research is required to ascertain whether the present findings reflect an actual lack of efficacy, negative effects or a delayed response to eccentric cycling training.publishedVersio

    Modulation of muscle–tendon interaction in the human triceps surae during an energy dissipation task

    Get PDF
    The compliance of elastic elements allows muscles to dissipate energy safely during eccentric contractions. This buffering function is well documented in animal models but our understanding of its mechanism in humans is confined to non-specific tasks, requiring a subsequent acceleration of the body. The present study aimed to examine the behaviour of the human triceps surae muscle–tendon unit (MTU) during a pure energy dissipation task, under two loading conditions. Thirty-nine subjects performed a single-leg landing task, with and without added mass. Ultrasound measurements were combined with three-dimensional kinematics and kinetics to determine instantaneous length changes of MTUs, muscle fascicles, Achilles tendon and combined elastic elements. Gastrocnemius and soleus MTUs lengthened during landing. After a small concentric action, fascicles contracted eccentrically during most of the task, whereas plantar flexor muscles were activated. Combined elastic elements lengthened until peak ankle moment and recoiled thereafter, whereas no recoil was observed for the Achilles tendon. Adding mass resulted in greater negative work and MTU lengthening, which were accompanied by a greater stretch of tendon and elastic elements and a greater recruitment of the soleus muscle, without any further fascicle strain. Hence, the buffering action of elastic elements delimits the maximal strain and lengthening velocity of active muscle fascicles and is commensurate with loading constraints. In the present task, energy dissipation was modulated via greater MTU excursion and more forceful eccentric contractions. The distinct strain pattern of the Achilles tendon supports the notion that different elastic elements may not systematically fulfil the same function

    Should we individualize training based on force-velocity profiling to improve physical performance in athletes?

    Get PDF
    The present study aimed to examine the effectiveness of an individualized training program based on force-velocity (FV) profiling on jumping, sprinting, strength, and power in athletes. Forty national level team sport athletes (20 ± 4years, 83 ± 13 kg) from ice-hockey, handball, and soccer completed a 10-week training intervention. A theoretical optimal squat jump (SJ)-FV-profile was calculated from SJ with five different loads (0, 20, 40, 60, and 80 kg). Based on their initial FV-profile, athletes were randomized to train toward, away, or irrespective (balanced training) of their initial theoretical optimal FV-profile. The training content was matched between groups in terms of set x repetitions but varied in relative loading to target the different aspects of the FV-profile. The athletes performed 10 and 30 m sprints, SJ and countermovement jump (CMJ), 1 repetition maximum (1RM) squat, and a leg-press power test before and after the intervention. There were no significant group differences for any of the performance measures. Trivial to small changes in 1RM squat (2.9%, 4.6%, and 6.5%), 10 m sprint time (1.0%, −0.9%, and −1.7%), 30 m sprint time (0.9%, −0.6%, and −0.4%), CMJ height (4.3%, 3.1%, and 5.7%), SJ height (4.8%, 3.7%, and 5.7%), and leg-press power (6.7%, 4.2%, and 2.9%) were observed in the groups training toward, away, or irrespective of their initial theoretical optimal FV-profile, respectively. Changes toward the optimal SJ-FV-profile were negatively correlated with changes in SJ height (r = −0.49, p < 0.001). Changes in SJ-power were positively related to changes in SJ-height (r = 0.88, p < 0.001) and CMJ-height (r = 0.32, p = 0.044), but unrelated to changes in 10 m (r = −0.02, p = 0.921) and 30 m sprint time (r = −0.01, p = 0.974). The results from this study do not support the efficacy of individualized training based on SJ-FV profiling.publishedVersio

    Effectiveness of individualized training based on force–velocity profiling on physical function in older men

    Get PDF
    The study aimed to investigate the effectiveness of an individualized power training program based on force–velocity (FV) profiling on physical function, muscle morphology, and neuromuscular adaptations in older men. Forty-nine healthy men (68 ± 5 years) completed a 10-week training period to enhance muscular power. They were randomized to either a generic power training group (GPT) or an individualized power training group (IPT). Unlike generic training, individualized training was based on low- or high-resistance exercises, from an initial force–velocity profile. Lower-limb FV profile was measured in a pneumatic leg-press, and physical function was assessed as timed up-and-go time (TUG), sit-to-stand power, grip strength, and stair-climbing time (loaded [20kg] and unloaded). Vastus lateralis morphology was measured with ultrasonography. Rate of force development (RFD) and rate of myoelectric activity (RMA) were measured during an isometric knee extension. The GPT group improved loaded stair-climbing time (6.3 ± 3.8 vs. 2.3% ± 7.3%, p = 0.04) more than IPT. Both groups improved stair-climbing time, sit to stand, and leg press power, grip strength, muscle thickness, pennation angle, fascicle length, and RMA from baseline (p < 0.05). Only GPT increased loaded stair-climbing time and RFD (p < 0.05). An individualized power training program based on FV profiling did not improve physical function to a greater degree than generic power training. A generic power training approach combining both heavy and low loads might be advantageous through eliciting both force- and velocity-related neuromuscular adaptions with a concomitant increase in muscular power and physical function in older men.publishedVersio

    Simple muscle architecture analysis (SMA): An ImageJ macro tool to automate measurements in B-mode ultrasound scans

    No full text
    In vivo measurements of muscle architecture (i.e. the spatial arrangement of muscle fascicles) are routinely included in research and clinical settings to monitor muscle structure, function and plasticity. However, in most cases such measurements are performed manually, and more reliable and time-efficient automated methods are either lacking completely, or are inaccessible to those without expertise in image analysis. In this work, we propose an ImageJ script to automate the entire analysis process of muscle architecture in ultrasound images: Simple Muscle Architecture Analysis (SMA). Images are filtered in the spatial and frequency domains with built-in commands and external plugins to highlight aponeuroses and fascicles. Fascicle dominant orientation is then computed in regions of interest using the OrientationJ plugin. Bland-Altman plots of analyses performed manually or with SMA indicate that the automated analysis does not induce any systematic bias and that both methods agree equally through the range of measurements. Our test results illustrate the suitability of SMA to analyse images from superficial muscles acquired with a broad range of ultrasound settings

    Effects of tracking landmarks and tibial point of resistive force application on the assessment of patellar tendon mechanical properties in vivo

    No full text
    The different methods used to assess patellar tendon elongation in vivo may partly explain the large variation of mechanical properties reported in the literature. The present study investigated the effects of tracking landmark position and tibial point of resistive force application during leg extensions in a dynamometer. Nineteen adults performed isometric contractions with a proximal and distal dynamometer shank pad position. Knee joint moments were calculated employing an inverse dynamics approach. Tendon elongation was measured using the patellar apex and either the tibial tuberosity (T) or plateau (P) as tracking landmark. Using P for tracking introduced a bias towards greater values of tendon elongation at all force levels from 100 N to maximum tendon force (TFmax; p < 0.05). The differences between landmarks considering maximum tendon strain were greater at the proximal shank pad position (p < 0.05). Tendon stiffness was lower for P compared with T, but only in intervals up to 50% of TFmax (p < 0.05). The agreement between T and P for stiffness calculated between 50% and TFmax was acceptable with the distal, but poor with the proximal pad position. We demonstrated that using the tibia plateau and not the insertion as tracking landmark clearly affects the assessment of the force–elongation curve of the patellar tendon. However, using a distal point of resistive force application and calculating tendon stiffness between 50% and TFmax seems to yield an acceptable agreement between landmarks. These findings have important implications for the assessment of tendon properties in vivo and cross-study comparisons
    • …
    corecore